52 research outputs found

    Semantics-Aligned Representation Learning for Person Re-identification

    Full text link
    Person re-identification (reID) aims to match person images to retrieve the ones with the same identity. This is a challenging task, as the images to be matched are generally semantically misaligned due to the diversity of human poses and capture viewpoints, incompleteness of the visible bodies (due to occlusion), etc. In this paper, we propose a framework that drives the reID network to learn semantics-aligned feature representation through delicate supervision designs. Specifically, we build a Semantics Aligning Network (SAN) which consists of a base network as encoder (SA-Enc) for re-ID, and a decoder (SA-Dec) for reconstructing/regressing the densely semantics aligned full texture image. We jointly train the SAN under the supervisions of person re-identification and aligned texture generation. Moreover, at the decoder, besides the reconstruction loss, we add Triplet ReID constraints over the feature maps as the perceptual losses. The decoder is discarded in the inference and thus our scheme is computationally efficient. Ablation studies demonstrate the effectiveness of our design. We achieve the state-of-the-art performances on the benchmark datasets CUHK03, Market1501, MSMT17, and the partial person reID dataset Partial REID. Code for our proposed method is available at: https://github.com/microsoft/Semantics-Aligned-Representation-Learning-for-Person-Re-identification.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), code has been release

    Target-Tailored Source-Transformation for Scene Graph Generation

    Get PDF
    Scene graph generation aims to provide a semantic and structural description of an image, denoting the objects (with nodes) and their relationships (with edges). The best performing works to date are based on exploiting the context surrounding objects or relations,e.g., by passing information among objects. In these approaches, to transform the representation of source objects is a critical process for extracting information for the use by target objects. In this work, we argue that a source object should give what tar-get object needs and give different objects different information rather than contributing common information to all targets. To achieve this goal, we propose a Target-TailoredSource-Transformation (TTST) method to efficiently propagate information among object proposals and relations. Particularly, for a source object proposal which will contribute information to other target objects, we transform the source object feature to the target object feature domain by simultaneously taking both the source and target into account. We further explore more powerful representations by integrating language prior with the visual context in the transformation for the scene graph generation. By doing so the target object is able to extract target-specific information from the source object and source relation accordingly to refine its representation. Our framework is validated on the Visual Genome bench-mark and demonstrated its state-of-the-art performance for the scene graph generation. The experimental results show that the performance of object detection and visual relation-ship detection are promoted mutually by our method

    Human Pose Estimation using Global and Local Normalization

    Full text link
    In this paper, we address the problem of estimating the positions of human joints, i.e., articulated pose estimation. Recent state-of-the-art solutions model two key issues, joint detection and spatial configuration refinement, together using convolutional neural networks. Our work mainly focuses on spatial configuration refinement by reducing variations of human poses statistically, which is motivated by the observation that the scattered distribution of the relative locations of joints e.g., the left wrist is distributed nearly uniformly in a circular area around the left shoulder) makes the learning of convolutional spatial models hard. We present a two-stage normalization scheme, human body normalization and limb normalization, to make the distribution of the relative joint locations compact, resulting in easier learning of convolutional spatial models and more accurate pose estimation. In addition, our empirical results show that incorporating multi-scale supervision and multi-scale fusion into the joint detection network is beneficial. Experiment results demonstrate that our method consistently outperforms state-of-the-art methods on the benchmarks.Comment: ICCV201
    • …
    corecore